Search results for "Interface Interactions"

showing 2 items of 2 documents

Influence of the Ce: YAG amount on structure and optical properties of Ce:YAG-PMMA composites for white LED

2016

Ce:YAG-poly(methyl methacrylate) (PMMA) composites were prepared by using a melt compounding method, adding several amounts of Ce:YAG in the range 0.1–5wt.%. The optical properties of the obtained composites and of the composites combined with a blue LED were measured to investigate the effect of the amount of Ce:YAG on the resulting emitted light in view of possible application in white LED manufacture. An increase in Ce:YAG amount caused an increase in the emission and a shift of 15 nm, influencing the white LED performance. The structure and morphology of the composites were studied. The results show that the interaction between the two components, observed by using solid state NMR exper…

Materials sciencegenetic structuresbusiness.industryWhite LEDPolymeric Composites02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPMMA01 natural sciencesInterface InteractionsYAG [Ce]eye diseases0104 chemical sciencesOptoelectronicsComposite materialPhysical and Theoretical Chemistry0210 nano-technologybusiness
researchProduct

Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations

2020

The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure–function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at mol…

MultiscaleInterface interactionsComputer scienceIn silicorare-event method02 engineering and technologyMolecular dynamics01 natural sciencesconstant-pH simulationArticleStructure-Activity RelationshipGPCRruokafoods0103 physical sciencesComputer Simulationcomputer simulationssimulointiravintoaineetProtein-sugar interactionsConstant pH simulationfood proteintilastolliset mallit2. Zero hungerMolecular interactionsCoarse graining010304 chemical physicsQSARFood proteinmolecular dynamicRare-event methodsexperiments021001 nanoscience & nanotechnologyToolboxfysikaaliset ominaisuudetkemialliset ominaisuudetStructure and functionsimulation food carbohydrates pHFoodcoarse grainingmolecular interactionEmulsionsDietary ProteinsproteiinitBiochemical engineeringmaku (aineen ominaisuudet)0210 nano-technologyfysiologiset vaikutuksetFood ScienceAnnual Review of Food Science and Technology
researchProduct